Abstract

ABSTRACTTo examine the effects of phenolic acids, which are generated by the decomposition of cell walls in plant residues, and other constituents on the stability of soil aggregates, phenolic acids and carbohydrates were mixed into three different types of soil. After a 1-month incubation, the plot containing soil mixed with phenolic acids showed the greatest mean weight diameter of all the soils. In the treated soils, before incubation, the decline of saturated water permeability during continuous water percolation was mitigated in the plot containing soil mixed with phenolic acids compared with that in the other plots. Soil aggregates were synthesized with the addition of phenolic acids and carbohydrates using two methods (mixing and surface brushing) and were incubated for 153 days. The aggregate stability was greatest in the plots surface-brushed with phenolic acids for Andosol and gray lowland soil, whereas the aggregate stability was most stable in the plots mixed with phenolic acids for yellow soil. This difference in the effectiveness of application methods is rationalized by the densities of the active Al and Fe contents, the carbon content, and the specific surface area of the soils. The phenolic acids also affected sandy soil. In a similar experiment using a gray lowland soil, mixing a portion of p-coumaric acid into synthetic aggregates was found to shift the molecular weight distribution of substances to larger molecular weights, as determined by size exclusion chromatography of the liquid extracted from the aggregates, which was likely accompanied by an increase in aggregate stability. The effects of fungi and bacteria on soil long-term stability were not greater than those of phenolic acids. Our findings and previous results show that microorganisms aid in soil-aggregate formation during the early stages, and phenolic acids not only aid in the formation of aggregates but also strongly stabilize them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.