Abstract

Methylglyoxal (MGO) is a highly reactive ɑ-dicarbonyl compound that may adversely impact food quality and human health by modifying proteins. The kinetics of the reaction of naringenin with MGO was studied at pH 6–8 and 37 °C by UV–Vis spectrophotometry and reaction products were characterized by liquid chromatography-mass spectrometry (LC-MS/MS). The apparent second order rate constant (k2) increased at pH above the lowest pKa value of naringenin, indicating deprotonated naringenin as the main reactant. A Lederer-Manasse type reaction mechanism is suggested, with dehydration of the MGO-dihydrate as a rate determining step. The quantitative data obtained in the present study was used to simulate the competitive reaction between MGO and nucleophilic amino acid residues (Lys, Arg and Cys) and naringenin in milk. It is predicted that naringenin will be able to efficiently trap MGO during storage of milk, although the reversible trapping of MGO by Cys residues is initially kinetically favourable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.