Abstract

The lipolysis of butter oil in a hollow-fiber reactor containing an immobilized calf pregastric esterase was studied at 40 degrees C and at pH values of 4.0, 5.0, 6.0, and 7.0. The concentrations of ten fatty acid species in the lipolyzed product were determined using high-performance liquid chromatography (HPLC). The relative specificity of this esterase depended on pH. Three mathematical models derived from a generalized Michaelis-Menten mechanism were tested for their ability to describe the rates of release of individual specific fatty acids. Loss of enzyme activity was modeled using first order kinetics. The models for deactivation and reaction kinetics were fit simultaneously to the data. The parameters of the model were also tested for dependence on pH. The model was successful in describing the rates of release of all ten fatty acid species for a range of space times and pH values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.