Abstract

Gold nanoparticles (GNPs) are widely used to detect DNA. We studied the effect of pH on the assembly/disassembly of single-stranded DNA functionalized GNPs. Based on the different binding affinities of DNA to GNPs, we present a simple and fast way that uses HCl to drive the assembly of GNPs for detection of DNA sequences with single nucleotide differences. The assembly is reversible and can be switched by changing the solution pH. No covalent modification of DNA or GNP surface is needed. Oligonucleotide derived from human p53 gene with one-base substitution can be distinguished by a color change of the GNPs solution or a significant difference of the maximum absorption wavelength (λmax), compared with wildtype sequences. This method enables detection of 10 picomole quantities of target DNA.

Highlights

  • Gold nanoparticles (GNPs) coupled with biomolecules are of great current interest because of their biomedical applications

  • When a complementary oligonucleotide duplex was added to the solution, the nanoparticles assembled into aggregates, which provoked a red-to-blue color change accomplished by a red-shift of the surface plasmon band

  • In the present work we developed a simple colorimetric assay using unmodified GNPs to detect 12 of the most frequent point mutations in exon 5, 7, and 8 of human p53 gene

Read more

Summary

Introduction

Gold nanoparticles (GNPs) coupled with biomolecules are of great current interest because of their biomedical applications. Keywords Single-stranded DNA Á HCl Á Gold nanoparticles Á p53 Á Mutation When a complementary oligonucleotide duplex was added to the solution, the nanoparticles assembled into aggregates, which provoked a red-to-blue color change accomplished by a red-shift of the surface plasmon band.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.