Abstract

Microalgal biomass, known as the third generation feedstock for biofuels production, is currently being explored mainly for lipids and functional components. However, the potential of microalgal carbohydrates has not been evaluated. In this investigation, Chlorella vulgaris JSC-6 was used for carbohydrates production from CO2 and fatty acids under different cultivation strategies to meet the requirements of a CO2-neutral and clean fermentation system for biofuel production. Autotrophic cultivation resulted in better carbon assimilation and carbohydrate accumulation; about 1.4 g CO2 could be converted to 1 g biomass, of which 50% are carbohydrates. Assimilation of fatty acids in photoheterotrophic and mixotrophic modes was influenced by pH, and pH 7–7.5 supported butyrate and acetate assimilation. The maximum carbohydrate content (49.86%) was attained in mixotrophic mode, and the ratio of the simple sugars glucose-xylose-arabinose was 1:0.11:0.02. The higher glucose content makes the microalgal biomass a suitable feedstock for sugar-based fermentations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.