Abstract

Colloidal stability of silicon nitride, silicon carbide and boron carbide aqueous slurries used for slurry nebulization inductively coupled plasma atomic emission spectrometry has been investigated in the pH range 2–10 by electrophoretic mobility and particle size measurements, together with sedimentation tests. The mean particle size of silicon nitride and silicon carbide suspensions change with increasing pH showing a maximum at the isoelectric points (pH 7.5 and 5.5 respectively). The particle size distribution of boron carbide slurries remains practically constant and the zeta potential of suspended boron carbide particles shows a small change in the pH range investigated. The silicon nitride and silicon carbide slurries have good stability at pH below 5 and above 8, respectively. Boron carbide slurries show excellent stability in the whole pH range investigated. The time demand for stabilization of the emission line intensities from the start of nebulization strongly depends on the colloidal stability of slurries. Consequently, it is advantageous to nebulize aqueous suspensions with a pH as far from the isoelectric point of the solid as possible and with the ionic strength of the dispersion medium as low as possible. The RSD values of the line intensity measurements determined after 3 min stabilization time decrease with increasing stability of the aqueous slurries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call