Abstract

Implementation of the new arsenic MCL in 2006 will lead to the generation of an estimated 6 million pounds of arsenic-bearing solid residuals (ABSRs) every year, which will be disposed predominantly in non-hazardous landfills. The Toxicity Characteristic Leaching Procedure (TCLP) is typically used to assess whether a waste is hazardous and most solid residuals pass the TCLP. However, recent research shows the TCLP significantly underestimates arsenic mobilization in landfills. A variety of compositional dissimilarities between landfill leachates and the TCLP extractant solution likely play a role. Among the abiotic factors likely to play a key role in arsenic remobilization/leaching from solid sorbents are pH, and the concentrations of natural organic matter (NOM) and anions like phosphate, bicarbonate, sulfate and silicate. This study evaluates the desorption of arsenic from actual treatment sorbents, activated alumina (AA) and granular ferric hydroxide (GFH), which are representative of those predicted for use in arsenic removal processes, and as a function of the specific range of pH and concentrations of the competitive anions and NOM found in landfills. The influence of pH is much more significant than that of competing anions or NOM. An increase in one unit of pH may increase the fraction of arsenic leached by 3–4 times. NOM and phosphate replace arsenic from sorbent surface sites up to three orders of magnitude more than bicarbonate, sulfate and silicate, on a per mole basis. Effects of anions are neither additive nor purely competitive. Leaching tests, which compare the fraction of arsenic mobilized by the TCLP vis-a-vis an actual or more realistic synthetic landfill leachate, indicate that higher pH, and greater concentrations of anions and NOM are all factors, but of varying significance, in causing higher extraction in landfill and synthetic leachates than the TCLP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.