Abstract

AbstractStyrene as a monomer was emulsified in water using several magnetite nanoparticles concentration and pH values. Emulsified styrene drops were used as templates for polymerization, in presence of water soluble free radical initiator, and formation of composite particles. Styrene template drops stabilization was verified by light as well as scanning electron microscopy imaging, which ensured the participation of the particles in building up a mechanical barrier to stop oil drops coalescence. Furthermore, the produced polystyrene composites were strongly attracted to an external magnet. The difference in particles size as a function of pH was elucidated using zeta potential measurements, which indicated dominance of pH on the hydrophilicity of the particles and consequently the extent of emulsification, which in turn affected the size of the obtained microspheres. Under some circumstances, capsules were formed instead of particles. Thereby, it can be concluded that the magnetic microspheres are optimally formed at pH 2.3 independently of the magnetite content used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.