Abstract

The effect of shear on heat-induced changes in milk protein concentrate suspensions was examined at different pH levels, revealing novel insights into micellar dissociation and protein aggregation dynamics. Milk protein concentrate suspensions, adjusted to pH of 6.1, 6.4, 6.8, or 7.5, underwent combined heat (90 °C for 5 min or 121 °C for 2.6 min) and shear (0, 100, or 1000 s-1) treatment. The fragmentation of protein aggregates induced by shear was evident in the control MPC suspensions at pH 6.8, irrespective of the temperature. At pH 7.5, shear increased the heat-induced micellar dissociation. This effect was particularly pronounced at 121 °C and 1000 s-1, resulting in reduced particle size and an elevated concentration of κ-casein (κ-CN) in the non-sedimentable phase. At pH 6.1 or 6.4, shear effects were dependent on sample pH, thereby modifying electrostatic interactions and the extent of whey protein association with the micelles. At pH 6.1, shear promoted heat-induced aggregation, evidenced by an increase in particle size and a significant decline in both whey proteins and caseins in the non-sedimentable phase. At pH 6.4, shear-induced fragmentation of aggregates was observed, prominently due to comparatively higher electrostatic repulsions and fewer protein interactions. The influence of shear on heat-induced changes was considerably impacted by initial pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call