Abstract

Normally, starch (sugars) and minerals are redistributed from the leaves to the pods during monocarpic senescence in maturing soybean plants. Petiole phloem destruction (steam girdling), which blocked this redistribution by interrupting export through the petiole, altered the foliar senescence pattern producing a distinctive interveinal yellowing with green areas along the veins on pod-bearing plants. This suggests that blockage of the petiole phloem may cause nutrients to accumulate in the green zones along the leaf veins instead of being redistributed to the pods. In the leaves of untreated plants, starch showed the same distribution pattern as chlorophyll; however, starch was preserved in yellow areas as well as the green zones of the steam-girdled leaves. Mineral analyses of the veinal and interveinal zones of treated leaves and controls showed that the veinal green zones and interveinal yellowing in treated plants were not respectively enriched and depleted in minerals corresponding to a redistribution of minerals within the leaves. Depodding also blocked leaf yellowing, net mineral redistribution and starch breakdown. Thus, the pods are able to induce chlorophyll breakdown without net mineral redistribution or starch loss in leaves with petiole phloem destruction. This shows that chlorophyll breakdown is not obligatorily coupled with mineral redistribution or starch breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call