Abstract

AbstractPoly(ε‐caprolactone) (PCL), a saturated polyester, derived from ring‐opening polymerization of ε‐caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two‐step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby–Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number‐average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing. Moreover, Young's modulus and elongation at break generally decreased with an increase in BPO content, but the tensile strength first increased with BPO content up to 1.0 wt%, reached a maximum, and then decreased. Copyright © 2007 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.