Abstract

Purpose: The aim of this research work was to formulate, characterize and evaluate the in vitro permeation behavior of tramadol lotion containing propylene glycol (PG) and polyethylene glycol (PEG) as permeation enhancers.Methods: The permeation experiments were conducted in vitro using full thickness rabbit skin in Franz diffusion cells. The donor compartment was filled with PBS (phosphate buffered saline) at pH 7.4 ± 0.1. The receptor phase was continuously stirred PBS (pH 7.4) at 37 °C ± 0.5. The amount of tramadol permeated into the receptor phase was determined spectrophotometrically at 271 nm. Various permeation parameters such as permeation coefficient (Kp), diffusion coefficient (D), flux (J), input rate,and enhancement ratio were obtained using Fick’s diffusion laws.Results: Permeation increased with increase in the concentrations of both enhancers tested. Maximum cumulative amount permeated for control lotion (Lc) was 357 ìg/cm2/min with input rate 0.574 ìg/min and lag time (tlag) of 34.93 min, while for the optimum test lotion (L4, containing 8 % PG/PEG in ratio of 1:1 v/v), it was 926 ìg/cm2/min, 1.482 ìg/min and 58.36 min, respectively. The significantly (p < 0.05) higher permeability shown by the test lotion L4 can be attributed, in part, to the interaction of PG withintercellular lipids leading to the disruption of their organization and increasing their fluidity, and also partly as a result of solubilization of lipid bilayers by PEG.Conclusion: A binary system of PG and PEG in lotion can be successfully utilized for the permeation enhancement of tramadol.Keyword: Tramadol, Transdermal delivery, Permeation, Propylene glycol, Polyethylene glycol, Rabbit skin.

Highlights

  • In a broad sense, the term TDDS includes all topically administered drug formulations intended to deliver the active ingredient into general circulation [1]

  • The entire drug should penetrate through the skin to the underlying blood supply without any accumulation in the layers of the skin for successful transdermal delivery which often involves a demonstration of clinical safety and effectiveness

  • It is evident from these values that spreadability of lotion decreased with the increase in propylene glycol (PG)-polyethylene glycol (PEG) content

Read more

Summary

Introduction

The term TDDS (transdermal drug delivery system) includes all topically administered drug formulations intended to deliver the active ingredient into general circulation [1]. The entire drug should penetrate through the skin to the underlying blood supply without any accumulation in the layers of the skin for successful transdermal delivery which often involves a demonstration of clinical safety and effectiveness. A closely related term is percutaneous delivery, which is the transport of drugs into target tissues with the aim to avoid systemic effects. TDDS provides various merits over conventional drug delivery systems such as oral and parenteral delivery, including avoidance of hepatic first pass metabolism, reduction of pain, and possible sustained release of drugs [5,6,7]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.