Abstract
The binding mode of cationic porphyrin (trans-BMPyP) with poly[d(G-C)2] and poly[d(A-T)2] was examined according to the site of the periphery cationic methyl pyridine ion of the cationic porphyrin (o-, m-, p-) as well as the possibility of a B-Z transition depending on the binding modes by measuring the absorption spectrum and circular dichroism (CD). The negative band found in the soret region showed the intercalation mode of m- and p-trans-BMPyP-poly[d(G-C)2] to the DNA base pairs, but no B-Z transition was induced. On the other hand, the distinctive bisignate band found in the soret region of the CD spectrum for m- and p-trans-BMPyP-poly[d(A-T)2] suggests that m- and p-trans-BMPyP have an effective extensive stacking-based binding mode along with the skeleton of poly[d(A-T)2], wherein the B-Z transition was induced through extensive stacking. The difference in binding mode was attributed to the difference in the molecular structure depending on the site of the periphery cationic methyl pyridine ion in the cationic porphyrin. In other words, o-trans-BMPyP is nonplanar because of the steric hindrance of the cationic methyl pyridine ion at the o-site. In contrast, m- and p-trans-BMPyP are planar, but not all porphyrins with a planar structure undergo the B-Z transition. In conclusion, a B-Z transition is induced if the structure of a porphyrin is planar and the binding mode allows the porphyrins to be stacked effectively along the DNA skeleton, not in a binding mode where the porphyrin is intercalated to the DNA.Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.