Abstract

Several types of changes have been reported to occur in dorsal root ganglia following peripheral nerve injury, including loss of neurons and increases and decreases in peptide expression. However, with regard to loss of neurons, results have not been consistent, presumably due to different quantitative methodologies employed and species analyzed. So far, most studies have been conducted on rats; however, with the fast development of the transgenic techniques, the mouse has become a standard model animal in primary sensory research. Therefore we used stereological methods to determine the number of neurons, as well as the expression of galanin message-associated peptide, a marker for galanin-expressing neurons, neuropeptide Y, and calcitonin gene-related peptide in lumbar 5 dorsal root ganglia of both control C57 BL/6J mice and in mice subjected to a 'mid-thigh' sciatic nerve transection (axotomy). In control animals the total number of lumbar 5 dorsal root ganglion neurons was about 12000. Seven days after axotomy, 24% of the dorsal root ganglion neurons were lost (P<0.001), and 54% were lost 28 days after axotomy (P<0.001). With regard to the percentage of peptide-expressing neurons, the results obtained showed that both galanin message-associated peptide (from <1% to about 21%) and neuropeptide Y (from <1% to about 16%) are upregulated, whereas calcitonin gene-related peptide is downregulated (from about 41% to about 14%) following axotomy. Results obtained with retrograde labeling of the axotomized dorsal root ganglion neurons indicate that the neuropeptide regulations may be even more pronounced, if the analysis is confined to the axotomized dorsal root ganglion neurons rather than including the entire neuron population. We also applied conventional profile-based counting methods to compare with the stereological data and, although the results were comparable considering the trends of changes following axotomy, the actual percentage obtained with the two methods differed markedly, both for neuropeptide Y- and, especially, for galanin message-associated peptide-positive neurons. These present results demonstrate that marked species differences exist with regard to the effect of nerve injury on dorsal root ganglion neurons. Thus, whereas no neuron loss is seen in rat up to 4 weeks after a 'mid-thigh' transection [Tandrup et al. (2000) J. Comp. Neurol. 422, 172-180], the present results indicate a dramatic loss already after 1 week in mouse. It is suggested that the proximity in physical distance of the lesion to the cell body is a critical factor for the survival of the target-deprived neurons. Finally, stereological methodology seems warranted when assessing the total number of neurons as well as changes in peptide regulations after axotomy in mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call