Abstract

To better define the time course of skeletal muscle glucose uptake and its modulation by changes in perfusion, we performed systemic euglycemic-hyperinsulinemic clamps (40 mU.m-2.min-1) for a 90-min period in a group of lean, insulin-sensitive subjects (n = 9) on two occasions (approximately 4 wk apart) with insulin-mediated vasodilation intact or inhibited. Insulin-mediated vasodilation was inhibited by an intrafemoral artery infusion of NG-monomethyl-L-arginine (L-NMMA), a specific inhibitor of nitric oxide synthase. During the study, leg blood flow (LBF) and arteriovenous glucose difference (AVG delta) were measured every 10 min; leg glucose uptake (LGU) was calculated as LGU = LBF x AVG delta. The systemic insulin infusion caused a time-dependent increase in LBF from 0.194 +/- 0.024 to 0.349 +/- 0.046 l/min (P < 0.01). The intrafemoral artery infusion of L-NMMA completely inhibited this increase in LBF. AVG delta, LGU, and whole body glucose disposal rates increased in a time-dependent manner in both studies. The maximum AVG delta was lower with insulin-mediated vasodilation intact than when inhibited (25.9 +/- 2.5 vs. 35.0 +/- 1.6 mg/dl, P < 0.001). The time to achieve half-maximal (T1/2) AVG delta was somewhat longer with insulin-mediated vasodilation intact compared with inhibited (35.6 +/- 4.1 vs. 29.7 +/- 1.6 min, P < 0.01). Maximal LGU was 93.9 +/- 26.8 and 57.2 +/- 11.6 mg/min (P < 0.005), and the T1/2 LGU was 50.2 +/- 16.0 and 36.3 +/- 8.8 min (P = 0.1) during intact and inhibited insulin-mediated vasodilation, respectively. Thus insulin-mediated vasodilation has a modest effect in slowing the time course at which insulin stimulates glucose uptake but has a marked effect in augmenting the maximal rate of insulin-stimulated glucose uptake in skeletal muscle. Impaired insulin-mediated vasodilation, as observed in patients with essential hypertension, may explain, at least in part, the insulin resistance observed in these patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.