Abstract
AbstractStrain‐induced self‐rolled‐up membranes (S‐RuM) are structures formed spontaneously by releasing a strained layer or layer stacks from its mechanical support, with unique applications in passive photonics, electronics, and bioengineering. Depending on the thermal properties of the strained layers, these structures can experience various thermally induced deformations. These deformations can be avoided and augmented with the addition of strategically placed perforations in the membrane. This study reports on the use of perforations to modify the thermal effects on strained silicon nitride S‐RuM structures. A programmable fuse with well‐defined thermal threshold, ultrasmall footprint, and 2–3 V voltage rating is demonstrated, which can potentially serve as an on‐chip sensing device for power electronic circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advanced Materials Interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.