Abstract

Perchloroethylene (PERC) is used widely as an industrial dry cleaning solvent and metal degreaser. PERC is an animal carcinogen that produces increased incidence of renal adenomas, adenocarcinomas, mononuclear cell leukemia, and hepatocellular tumors. Oxidative DNA damage and lipid peroxidation were assessed in 38 women with (dry cleaners) or without (launderers) occupational exposure to PERC. PERC exposure was assessed by collecting breathing zone samples on two consecutive days of a typical work week. PERC levels were measured in blood drawn on the morning of the second day of breathing zone sample collection in dry cleaners and before a typical workday in launderers. Blood PERC levels were two orders of magnitude higher in dry cleaners compared to launderers. A significant correlation was noted between time weighted average (TWA) PERC and blood PERC in dry cleaners ( r=0.7355, P<0.002). 8-Hydroxydeoxyguanosine (8-OHdG), ng/mg deoxyguanosine (dG) in leukocyte nuclear DNA was used as an index of steady-state oxidative DNA damage. Urinary 8-OHdG, μg/g creatinine was used as an index of oxidative DNA damage repair. Urinary 8-epi-prostaglandin F 2α (8-epi-PGF), ng/g creatinine was used as an index of lipid peroxidation. The mean±S.D. leukocyte 8-OHdG in launderers was 16.0±7.3 and was significantly greater than the 8.1±3.6 value for dry cleaners. Urinary 8-OHdG and 8-epi-PGF were not significantly different between dry cleaners and launderers. Unadjusted Pearson correlation analysis of log transformed PERC exposure indices and biomarkers of oxidative stress indicated a significant association in launderers between blood PERC and day 1 urinary 8-OHdG ( r=0.4661, P<0.044). No significant associations between exposure indices and biomarkers were evident in linear models adjusted for age, body mass index, race, smoking (urinary cotinine, mg/g creatinine) and blood levels of the antioxidants Vitamin E and β-carotene. The mean±S.D. leukocyte 8-OHdG value in control white women was 17.8±7.4 and was significantly greater than the 11.8±5.9 in control black women. No significant differences by race were evident for the other biomarkers. Smoking status was not significantly associated with any of the oxidative damage indices. Results indicate a reduction in oxidative DNA damage in PERC exposed dry cleaners relative to launderers, but PERC could not clearly be defined as the source of the effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call