Abstract

Gap junction intercellular communication (IC) is thought to be important in chemical carcinogenesis as abnormalities in IC have been found in cancer cells. Perchloroethylene (PERC) is metabolized in rodent liver to dichloroacetic acid (DCA) and trichloroacetic acid (TCA), which are rodent liver carcinogens. Chloral hydrate (CH) and trichloroethanol (TCEth) are kidney metabolites. We used Lucifer yellow scrape-load dye transfer as a measure of IC to look at the effect of PERC, DCA, TCA, CH, and TCEth on Clone 9 cell cultures (normal rat liver cells). Four independent experiments were performed for each chemical using exposure times of 1, 4, 6, 24, 48, and 168 h. Concentrations for each chemical varied and were based on preliminary data on effect and cytotoxicity. To compare the relative effectiveness of each chemical to cause biological change, we identified the lowest concentration and shortest time to significantly reduce dye transfer. DCA caused a significant change at 10 mM at 6 h; TCA, 1 mM at 1 h; CH and TCEth, 1 mM at 24 h; and PERC, 0.01 mM at 48 h. Over a 24-h treatment period, the relative efficiencies, as defined by the concentration needed to produce 50% reduction in IC, were PERC (0.3 mM) >> TCA (3.8 mM) > TCEth (6.6 mM) = CH (7.0 mM) >> DCA (41 mM). Time-course data indicated that PERC, DCA, and TCA produced reduction in IC in a similar fashion, but 5 mM CH or TCEth exhibited variances from these results and may indicate specific cell responses to these chemicals. The mechanism(s) responsible for inhibition of IC by these structurally related chemicals needs to be established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.