Abstract

Poly-l-lysine (PLL), in α-helix or β-sheet configuration, was used as a model peptide for investigating the effect of secondary structures on adsorption events to poly(ethylene oxide) (PEO) modified surfaces formed using θ solvents. Circular dichroism results showed that the secondary structure of PLL persisted upon adsorption to Au and PEO modified Au surfaces. Quartz crystal microbalance with dissipation (QCM-D) was used to characterize the chemisorbed PEO layer in different solvents (θ and good solvents), as well as the sequential adsorption of PLL in different secondary structures (α-helix or β-sheet). QCM-D results suggest that chemisorption of PEO 750 and 2000 from θ solutions led to brushes 3.8±0.1 and 4.5±0.1nm thick with layer viscosities of 9.2±0.8 and 4.8±0.5cP, respectively. The average number of H2O per ethylene oxides, while in θ solvent, was determined as ∼0.9 and ∼1.2 for the PEO 750 and 2000 layers, respectively. Upon immersion in good solvent (as used for PLL adsorption experiments), the number of H2O per ethylene oxides increased to ∼1.5 and ∼2.0 for PEO 750 and 2000 films, respectively. PLL adsorbed masses for α-helix and β-sheet on Au sensors was 231±5 and 1087±14ngcm−2, with layer viscosities of 2.3±0.1 and 1.2±0.1cP, respectively; suggesting that the α-helix layer was more rigid, despite a smaller adsorbed mass, than that of β-sheet layers. The PEO 750 layer reduced PLL adsorbed amounts to ∼10 and 12% of that on Au for α-helices and β-sheets respectively. The PLL adsorbed mass to PEO 2000 layers dropped to ∼12% and 4% of that on Au, for α-helix and β-sheet respectively. No significant differences existed for the viscosities of adsorbed α-helix and β-sheet PLL on PEO surfaces. These results provide new insights into the fundamental understanding of the effects of secondary structures of peptides and proteins on their surface adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.