Abstract

Obstruction of fluid flow by stationary bubbles in a microchannel hemodialyzer decreases filtration performance and increases damage to blood cells through flow maldistribution. A polyethylene oxide (PEO)-polybutadiene (PB)-polyethylene oxide surface modification, previously shown to reduce protein fouling and water/air contact angle in polycarbonate microchannel hemodialyzers, can improve microchannel wettability and may reduce bubble stagnation by lessening the resistive forces that compete with fluid flow. In this study, the effect of the PEO-PB-PEO coating on bubble retention in a microchannel array was investigated. Polycarbonate microchannel surfaces were coated with PEO-PB-PEO triblock polymer via radiolytic grafting. Channel obstruction was measured for coated and uncoated microchannels after injecting a short stream of air bubbles into the device under average nominal water velocities of 0.9 to 7.2cm/s in the channels. The presence of the PEO coating reduced obstruction of microchannels by stationary bubbles within the range of 1.8 to 3.6cm/s, average nominal velocity. Numerical simulations based on the lattice Boltzmann method indicate that beneficial effects may be due to the maintenance of a lubricating, thin liquid film around the bubble. The determined effective range of the PEO coating for bubble management serves as an important design constraint. These findings serve to validate the multiutility of the PEO-PB-PEO coating (bubble lubrication, biocompatibility, and therapeutic loading). © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 941-948, 2016.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call