Abstract

The effect of a commonly used hole injection layer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT–PSS), on polymer light-emitting diode (PLED) performance has been investigated. A series of four different types of commercial PEDOT–PSS, with varying resistivity and work function were examined in devices with the structure Indium Tin Oxide (ITO)/PEDOT–PSS/High Molecular Weight Poly(n-vinylcarbazole) (PVKH): 30% N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD)/Low molecular Weight Poly(n-vinylcarbazole) (PVKL): 40% 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole (PBD): 8% Ir(ppy)3. It was found that the PEDOT–PSS with the highest work function and resistivity produced the devices with the highest efficiencies; this is due to the improved hole injection effect, the decrease in electron leakage current and the prevention of pixel crosstalk. A maximum device current efficiency of 33.4cdA−1 has been achieved for the most resistive PEDOT; this corresponded to an external quantum efficiency (E.Q.E.) of 11%. Increasing the work function of the PEDOT used resulted in a 60% increase in E.Q.E. and device efficiency for PEDOTs in the same resistivity range. Drift–diffusion simulations, carried out using SEmiconducting Thin Film Optics Simulation software (SETFOS) 3.2, produced J–V curves in good agreement with the experimentally observed results; this allowed us to extract qualitative values for the effective device mobility along with the PEDOT work function and resistivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.