Abstract
Cellulose nanofibrils (CNFs) from non-woody biomass, including citrus peel (CpCNFs), are promising naturally occurring nanomaterials; however, their properties depend on the composition of non-cellulosic components, including pectin. In this study, the effects of pectin modifications on CpCNFs were examined, including demethylesterification using alkaline treatment and enzymatic degradation of pectin using pectinase. CpCNFs could be redispersed in water with little aggregation after drying; however, the redispersibilities of both alkaline-treated (AT-CpCNFs) and pectinase-treated CpCNFs (PT-CpCNFs) were improved. Both AT-CpCNFs and PT-CpCNFs exhibited higher viscosity than untreated CpCNFs (UT-CpCNFs); redispersion in water after drying further increased the viscosity. A quartz crystal microbalance revealed that interactions between AT-CpCNFs were barely detectable, and interactions between PT-CpCNFs were stronger than those between UT-CpCNFs. The increase in the carboxylate groups of pectin due to demethylesterification in AT-CpCNF may have increased the viscosity and reduced the interactions between AT-CpCNFs, explaining the improved redispersibility. The increase in the viscosity of PT-CpCNFs may be attributed to the increased purity of CNFs, which is assumed to be more viscous than pectin. Our results show that the properties of CpCNFs are affected by the structure, properties, and content of pectin and can be controlled by pectin modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.