Abstract
Abstract Satellite attitude modes and antenna phase center variations have a great influence on the Precise Orbit Determination (POD) of Low Earth Orbit satellites (LEOs). Inaccurate information about spacecraft attitude, phase center offsets and variations in the POD leads to orbital error. The Jason-3 satellite experienced complex attitude modes which are fixed, sinusoidal, ramp-up/down and yaw-flip. Therefore, it is necessary to properly construct the attitude model in the process of POD especially when there is no external attitude data. For the antenna phase center correction, the PCO which is the deviation between Antenna Reference Point (ARP) and Mean Antenna Phase Center (MAPC) usually can be calibrated on the ground accurately, but the PCV which is the deviation between Instantaneous Antenna Phase Center (IAPC) and Mean Antenna Phase Center (MAPC) will change greatly with the change of space environment. Residual approach can be used to estimate the receiver PCV map. In this paper, we collected the on-board GPS data of Jason-3 satellite from January 2019 and analyzed the impacts of PCV and spacecraft attitude on the orbit accuracy by performing the reduced-dynamic POD. Compared with the reference orbit released by the Centre National d’Études Spatiales (CNES), using the PCV map can reduce the Root Mean Square (RMS) of orbit differences in the Radial (R), Along-track (T), Cross-track (N) and 3D direction about 0.3, 1.0, 0.9, and 1.4 mm. Based on the estimated PCV map, the orbit accuracy in R, T, N and 3D direction is 1.24, 2.81, 1.17, and 3.29 cm respectively by using the measured attitude data. When using the attitude model, the orbit accuracy in R, T, N and 3D directions is 1.60, 3.54, 1.33, and 4.13 cm, respectively. The results showed that the combination of measured attitude data and modeled PCV map can obtain the better orbit solution. It is essential to build a corresponding model in high-precision orbit determination, when there is no attitude data and PCV map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.