Abstract

The process of melt quenching is utilized in the preparation of the PbO-TeO2-MgO-Na2O-B2O3 glasses. The effect of PbO and B2O3 on the physical, structural, and radiation shielding properties of present glasses have been presented in this study. As the lead concentration rises, both the density and the molecular weight rise, climbing from 3.283 to 3.923 g/cm3 and from 105.638 to 128.675 g, respectively. The utilization of PbO as an alternative to B2O3 contributes to an increase in the overall number of at-oms, which in turn contributes to an increase in the molar volume. The XRD spectra show that the samples are amorphous. The different bending and stretching vibrations of the bonds present in the samples are shown by the FTIR spectra. The mass attenuation coefficient (MAC), linear attenuation coefficients (LAC), half-value layers (HVL), and effective atomic number (Zeff) were calculated using Phy-X software within the energy range 0.284–2.506 MeV. These obtained verdicts advocate that pre-pared Pb4 glass containing the highest concentration of PbO showed supreme shielding ability comparing the rest of the pre-pared glasses. According to these results, it can be said that PbO and B2O3 are the weighty additive composites for glass composition in the interest of radiation shielding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call