Abstract

Spin-polarized transport of photoelectrons in bulk, p-type GaAs is investigated in the Pauli blockade regime. In contrast to usual spin diffusion processes in which the spin polarization decreases with distance traveled due to spin relaxation, images of the polarized photoluminescence reveal a spin-filter effect in which the spin polarization increases during transport over the first 2 μm from 26% to 38%. This is shown to be a direct consequence of the Pauli principle and the associated quantum degeneracy pressure which results in a spin-dependent increase in the minority carrier diffusion constants and mobilities. The central role played by the quantum degeneracy pressure is confirmed via the observation of a spin-dependent increase in the photoelectron volume and a spin-charge coupling description of this is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call