Abstract

The 3-Dimensional (3-D) position estimation (PE) accuracy of a multilateration (MLAT) system depends on several factors one of which is the accuracy at which the time difference of arrival (TDOA) measurements are obtained. In this paper, signal attenuation is considered the major contributor to the TDOA estimation error and the effect of the signal attenuation based on path loss propagation model on the PE accuracy of the MLAT system is determined. The two path loss propagation models are considered namely: Okumura-Hata and the free space path loss (FSPL) model. The transmitter and receiver parameters used for the analysis are based on actual system used in the civil aviation. Monte Carlo simulation result based on square ground receiving station (GRS) configuration and at selected aircraft positions shows that the MLAT system with the Okumura-Hata model has the highest PE error. The horizontal coordinate and altitude error obtained with the Okumura-Hata are 2.5 km and 0.6 km respectively higher than that obtained with the FSPL model

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.