Abstract

Laboratory experiments were carried out to investigate the fate of bacteria during and after passage through the intestinal tract of detritivore earthworms. Earthworms (Lumbricus spp.) were fed with cattle dung inoculated 7 days previously with one of five different Gram-negative bacteria. Bacterial concentrations were determined 2 days later in dung and soil, and in gut material from different parts of the earthworm intestinal tract. A high percentage (28–82%) of the total bacteria (epifluorescence direct counts) in the earthworm gut content was culturable. The concentration of total heterotrophic aerobic bacteria did not vary significantly among the five different bacterial additions and the non-inoculated control. In earthworm casts the number of total heterotrophs per gram dry matter (2.1×109) was higher than in soil (1.7×108), but lower than in the dung (1.5×1010). The test-bacteria, however, showed different survival patterns along the earthworm intestinal tract. The concentrations of Escherichia coli BJ 18 and Pseudomonas putida MM 1 and MM 11 in earthworm casts were lower than in the ingested dung, while concentrations of Enterobacter cloacae A 107 and Aeromonas hydrophila DMU 115 in dung and casts were similar. Ent. cloacae, and to aminor extent E. coli, were reduced in numbers by several orders of magnitude in the pharynx and/or crop. In the hind gut, however, the concentration of Ent. cloacae had increased to the same level as in the ingested dung, while the concentration of E. coli remained low. Our observations indicate that the bacterial flora of ingested food materials changes qualitatively and quantitatively during gut transit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.