Abstract

In this paper, the cyclic stress response and cyclic stress–strain response characteristics, cyclic strain resistance and low-cycle fatigue life, and mechanisms governing the deformation and fracture behavior of aluminum alloy 6061 discontinuously reinforced with silicon carbide (SiC) particulates are presented and discussed. Two different volume fractions of the carbide particulate reinforcement phase in the aluminum alloy metal matrix are considered. The composite specimens were cyclically deformed using fully reversed tension–compression loading under total strain-amplitude-control. The stress response characteristic was observed to vary with strain amplitude. The plastic strain-fatigue life response was found to degrade with an increase in carbide particulate content in the metal matrix. The fracture behavior of the composite is discussed in light of the interactive influences of composite microstructural effects, cyclic strain amplitude and concomitant response stress, deformation characteristics of the composite constituents and cyclic ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call