Abstract

The effect of second-phase particles on the evolution of the deformation microstructure during cold rolling of the particle-containing aluminum alloy AA3104 has been investigated using electron channeling contrast imaging and electron backscattered diffraction (EBSD). The results show that the influence of second-phase particles on the deformation microstructure depends on the particle size. Fine dispersoids present in the microstructure have no clear effect on the grain orientation dependence of the dislocation structures formed in the strain range examined. However, large scale structural heterogeneities, in the form of deformation zones, are formed near coarse constituent particles, leading to significant local distortions of the deformed microstructure. Analysis of EBSD data shows that significant orientation gradients are found in the vicinity of the coarse particles. Within the deformation zones the largest lattice rotations occur at the tips of plate-shaped constituent particles. A symmetrical pattern of TD-rotations of alternating sign is found in the deformation zones, with the magnitude of the lattice rotations increasing with increasing strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.