Abstract

The effect of particle size (Archimedes number) on the propagation of a kinematic particle concentration wave in a fluidized bed is investigated. The dependence of the characteristic wave velocity on the porosity of the bed (particle concentration) and the Archimedes number (or the Reynolds number for flow past individual particles of the dispersed phase) is determined. The evolution of a nonlinear perturbation of the bed porosity is investigated and the formation of discontinuities in the concentration of the dispersed phase is studied in relation to the particle size (Archimedes number). It is shown, in particular, that, as distinct from a bed of small particles, in a bed of large particles with quadratic interphase interaction only compression discontinuities can be formed. The results obtained can be used to analyze the formation of inhomogeneities (slugs and bubbles) in a fluidized bed in relation to the particle size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call