Abstract

The liquid nitrogen adsorption method was used to characterize the pore structure of non-cohesive coal in the 061,404 working face of the Lingxin coal mine. The amount of specific surface area of micropores in the sample continuously rose as particle sizes reduced. The volumetric method was used to measure the CO isothermal adsorption curves of three samples (sample I, 0.425–0.25 mm, sample II, 0.18–0.25 mm, and sample III, 0.15–0.18 mm). The experimental results were fitted by the Langmuir model. According to the experimental results, it was conducive to CO adsorption with the conditions of high pressure and low-temperature. The decrease in grain diameter increased the number and volume of micropores in the sample, which improved the adsorption capacity of the sample. In addition, according to the adsorption data, the CO adsorption thermodynamics of three samples were analyzed, including surface potential (Ω), Gibbs free energy change (ΔG) and entropy change (ΔS). The results demonstrated that CO adsorption by coal was a spontaneous process. Sample III has the most substantial adsorption capacity, whereas the sample I has the weakest adsorption capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call