Abstract

Influence of the grain size of aluminium oxide material, being a product of centrifugal thermal activation of hydrargillite, on adsorption kinetics of water vapors was studied. The material was characterized by the BET method and X-ray phase analysis (XRD). Influence of gas flow rate on adsorption dynamics was studied on a laboratory installation using McBain-Bakr quartz balance. It was shown that with the fraction size greater than 0.5-1.0 mm, the rate of water vapor adsorption on this adsorbent decreased, which was connected with the influence of internal diffusion resistance. On the base of the first-order kinetic equation for the water adsorption mathematical modeling was carried out. The kinetic parameters of the equation for the various grain size samples (0.25-0.5 mm and 0.5-1.0 mm and 3.7 x 6 mm granule) were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.