Abstract
The effect of particle size on two-phase turbulent jet flow structure is studied in the present experimental investigation. Polystyrene solid particles of 210, 460, and 780 μm were used. The particles' mass loading ratios ranged from 0 to 3.6. The flow Reynolds number was 2 ‘ 10 4 , which was based on the pipe nozzle diameter and the fluid-phase centerline velocity at the nozzle exit. A two-color laser-Doppler anemometer (LDA), combined with the amplitude discrimination method and the velocity filter method, was employed for measurement. The measurement range of the jet flow was from the initial pipe exit to 90D downstream. Results are presented for the mean velocities of particle and fluid phases, the flow's turbulent intensities and the flow's Reynolds stresses. The energy spectra and the correlation functions of the two-phase jet flow were also obtained by using another one-component He-Ne LDA system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.