Abstract

Particle size gradation is regarded as an effective method for overcoming the contradicting requirements in three-dimensional printing (3DP). In present work, particle size gradation was optimized to obtain both acceptable flowability of the powder material and high-strength 3D-printed glass-ceramic products. The effect of gradation on the printing process, sintering process and performance of the 3D-printed glass-ceramic products was investigated comprehensively. The glass-ceramic powders with three size ranges were mixed in certain proportions and applied to print parts. The result showed parts printed with powder mixed by 60wt% 45–100µm and 40wt% 0–25µm particles had satisfactory density of 1.60g/cm3 and bending strength of 13.8MPa. The flowability decreased with an increasing proportion of fine particles. Part density was determined by the powder bulk density in the powder bed as well as the shrinkage during sintering while strength of part was found to be dependent on the sintering degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.