Abstract

AbstractAll‐solid‐state batteries promise higher energy and power densities as well as increased safety compared to lithium‐ion batteries by using non‐flammable solid electrolytes and metallic lithium as the anode. Ensuring permanent and close contact between the components and individual particles is crucial for long‐term operation of a solid‐state cell. This study investigates the particle size dependent compression mechanics and ionic conductivity of the mechanically soft thiophosphate solid electrolyte tetragonal Li7SiPS8 (t‐LiSiPS) under pressure. The effect of stack and pelletizing pressure is demonstrated as a powerful tool to influence the microstructure and, hence, ionic conductivity of t‐LiSiPS. Heckel analysis for granular powder compression reveals distinct pressure regimes, which differently impact the Li ion conductivity. The pelletizing process is simulated using the discrete element method followed by finite volume analysis to disentangle the effects of pressure‐dependent microstructure evolution from atomistic activation volume effects. Furthermore, it is found that the relative density of a tablet is a weaker descriptor for the sample's impedance compared to the particle size distribution. The multiscale experimental and theoretical study thus captures both atomistic and microstructural effects of pressure on the ionic conductivity, thus emphasizing the importance of microstructure, particle size distribution and pressure control in solid electrolytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.