Abstract

A hydrated form of 7-methoxy-1-methyl-5-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-a]quinolin-4-amine (designated Form B) exhibits moisture sorption behavior that is very strongly affected by particle size and morphology. When studied pre- and post-micronization, the simple rate of dehydration at ambient temperature is faster by >2 orders of magnitude after micronization. Complementary techniques were employed to understand this behavior including environmental X-ray powder diffractometry (XRPD), gravimetric vapor sorption (GVS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), hot-stage microscopy (HSM), single-crystal X-ray diffractometry (SCXRD), and solid-state nuclear magnetic resonance (SSNMR). Solid-state kinetics analysis of thermal data revealed that dehydration of the nonmicronized material follows a two-step consecutive reaction with the first step being a diffusion limited reaction and the second step being a first order reaction, whereas the micronized material ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.