Abstract

The effect of particle size and boundary geometry in granular shear flows is investigated. The measured shear stress of glass spheres in an annular shear cell experiment is reported. In order to explore the particle size effect, the experiments are run using four different particle diameters, d = 2, 3, 4, and 5 mm. It is found that the shear stress follows the Bagnold scaling with respect to the apparent shear rate, but deviates from it with respect to particle size. For high solids concentration the results deviate qualitatively from the kinetic theory for bounded granular shear flows, where the non-dimensional shear stress measured with large particles exceeds that measured for small particles by as much as one order of magnitude. The effect of the boundary geometry is explored by using three different boundary types; type 1 employs aluminum radial half-cylinders, type 2 employs aluminum hemispheres arranged in a polar hexagonal closed packed configuration, and type 3 employs sandpaper. It is shown that the geometry of the boundary has an insignificant effect on dilute flows of small particles. For denser flows and/or larger particles the difference is evident. The sandpaper boundary, which is different from the aluminum ones both in geometry and in its material properties, yields the lowest stress. These results imply that in granular materials-structure interaction, the structure’s properties are just as important as the properties of the granular material. Their interaction may also depend on the relative size between the structure and the grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.