Abstract

Two types of MgO-C refractories with tight particle grading and non-tight particle grading were prepared according to Andreasen's continuous packing theory. Fracture behaviors were investigated using wedge splitting tests combined with digital image correlation method and acoustic emission techniques. The results indicated that MgO-C refractory with non-tight particle grading treated at 1400 ℃ had more in situ phases (e.g., AlN and MgAl2O4) and exhibited less brittleness than specimens with tight particle grading even though they had similar nominal tensile strengths. In contrast, specimens with non-tight particle grading had greater horizontal strain under various loading stages, reflecting their better ability to resist rupture deformation. In addition, more microcracks were initiated earlier in the pre-peak region, and more energy was consumed. The decrease in coarse particles and corresponding increase in fine powder content increased the interface between particles, benefiting for reducing the local stress concentration and improving the thermal shock resistance of refractories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call