Abstract

Recently, there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Piezoelectric materials and shape memory alloys (SMA) are often used as partial thickness actuators to create such adaptivity by applied energy, usually electric curent. These actuators can be used to inducce strains in a structure and reduce stresses in regions of high stress concentration. Two of the present authors show that axisymmetric actuation strains applied troughout the thickness of a plate with a hole can reduce the stress concentration factor (SCF) in an isotropic plate from 3 to 2. However, in most cases actuators are expected to be bonded to or embedded in the plate, so that the actuation strains are applied in the actuators and not directly in the plate. The objective of this note is to show that such partial-thickness actuation cannot be used to reduce the stress concentration factor with axisymmetric actuations strain distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.