Abstract

This work reports studies on the electrochemical behavior of AB5-type hydrogen storage alloys, formed by LaNi(5-x)Zx, where Z is a metallic element partially replacing Ni, which included Sn, Al, Mn, and Pd. In the case of Mn, some AB6-type structures were also considered. Substitution of a small fraction of Ni by Al, Sn, and Mn (x @ 0.3) leads to an increase of the hydrogen storage capability (HSC), while for Pd there is a decrease of this property. Generally all alloys presenting larger initial HSC exhibit lower stability. A decrease of the hydrogen equilibrium pressure as a function of Mn content is observed for the AB5 alloys and this is related to an increase of the crystalline unit cell volume. Electrochemical impedance measurements show a significant increase of the hydration/dehydration reaction kinetics due to a raise on the active area as a function of the charge/discharge cycle number. It is also seen that the alloys presenting larger HSC are those showing smaller activation energies for the hydrogen oxidation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.