Abstract

CaO particles from the calcination of natural limestones can be used as regenerable solid sorbents in some CO{sub 2} capture systems. Their decay curves in terms of CO{sub 2} capture capacity have been extensively studied in the literature, always in experiments allowing particles to reach their maximum carbonation conversion for a given cycle. However, at the expected operating conditions in a CO{sub 2} capture system using the carbonation reaction, a relevant fraction of the CaO particles will not have time to fully convert in the carbonator reactor. This work investigates if there is any effect on the decay curves when CaO is only partially converted in each cycle. Experiments have been conducted in a thermobalance arranged to interrupt the carbonation reaction in each cycle before the end of the fast reaction period typical in the CaO-CO{sub 2} reaction. It is shown that, after the necessary normalization of results, the effective capacity of the sorbent to absorb CO{sub 2} during particle lifetime in the capture system slightly increases and CaO particles partially converted behave 'younger' than particles fully converted after every calcination. This has beneficial implications for the design of carbonation/calcination loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.