Abstract

Previous results have shown that 1,25-dihydroxycholecalciferol [1,25(OH)2D3] enhances the synthesis of phosphatidylserine (PS) and suppresses the synthesis of phosphatidylethanolamine (PE) in osteoblast-like rat osteogenic sarcoma UMR 106 cells [Matsumoto, Kawanobe, Morita & Ogata (1985) J. Biol. Chem. 260, 13704-13709]. In the present study, the effect of parathyroid hormone (PTH) on phospholipid metabolism is examined by using these cells. Treatment of UMR 106 cells with human PTH-(1-34)-peptide suppresses the synthesis of phosphatidylethanolamine in a dose- and time-dependent manner without affecting the synthesis of PS. The maximal effect on PE synthesis is obtained with 2.4 nM-human PTH-(1-34)-peptide when the cells are treated for 48 h or longer. In addition, when human PTH-(1-34)-peptide is added together with the maximal dose of 1,25(OH)2D3, there is a further decline in PE synthesis, whereas the stimulation of PS synthesis by 1,25(OH)2D3 is not altered. Because methylation of PE is suggested to affect hormone receptor-adenylate cyclase coupling, the observed change in PE metabolism by PTH and 1,25(OH)2D3 may be, at least in part, involved in the development of desensitization phenomenon to PTH in these cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.