Abstract

Toxicosis due to paraquat, a redox cycling xenobiotic, is still a subject of much debate. In the present study on lipid peroxidation, paraquat had a biphasic effect on the malondialdehyde (MDA) level in rat liver microsomes; stimulation at the initial stage (within 10 min) and depression at the later stage. Although paraquat increased the initial rate of NADPH oxidation dose-dependently, the rate was not necessarily parallel with the increase in the MDA level. The MDA level increased linearly up to 0.1 mM paraquat added, but then it attained a plateau. The stimulation obtained by paraquat within 10 min was absolutely dependent on exogenous Fe2+ ion and NADPH, and the stimulation was entirely SOD sensitive, while the iron-driven increase in MDA was 20% sensitive. Thus, there were different mechanisms between iron-driven lipid peroxidation and paraquat-modified peroxidation. Catalase increased the level, but mannitol, a scavenger of OH, had no effect. EPR spectra showed that superoxide was formed dose-dependently up to 0.1 mM paraquat and that it attained a plateau at the same as MDA level described above. From these results, we concluded that paraquat stimulates lipid peroxidation through a mechanism dependent on the superoxide complex involving Fe2+ ion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call