Abstract

Modified Callaway's theory was used to calculate lattice thermal conductivity (LTC) of Germanium nanowires. Results are compared to those of experimental values of the temperature dependence of LTC for nanowire diameters of 62, 19, and 15nm. In this calculation, both longitudinal and transverse modes are taken into account. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Effect of parameters, phonon confinement and imperfections in limiting thermal conductivity for the nanowires under considerations are investigated. The suppression in thermal conductivity of these nanowires is arise from electron-phonon scattering and phonon-boundary scattering at low temperatures, while at high temperatures is due to imperfections and intrinsic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.