Abstract

Chickpea (Cicer arietinum L.) is the world’s third most vital food legume after beans and peas in production level. Yet, its productivity in the last decade has been declined, and it has been contended that the usual native soil rhizobial populations are insufficient/ineffective in N2-fixation. Rhizobium inoculation of the seed may substitute costly N-fertilizers and provide a useful way of achieving sustainable production. Hence, to supply an adequate rhizobial population in the rhizosphere, seed inoculation of chickpea with an effective and importunate rhizobial strain is essential in soils having no/feeble bacterial existence and has revealed optimistic effect on nodule number and mass, growth, yield, and its attributes over uninoculated ones. Its effect has been influenced by N content and P-deficiency of soil, rhizobium strain, variety, T°, pH, salinity, and moisture stress. Phosphorus (P) demand is high in chickpeas, and P deficiency also has a negative effect on chickpea production success. Several research results revealed significant effects of P rate (30–200 kg P2O5 ha−1) on nodule number, mass, and rating plant−1; LAI, RGR, DM, plant height, and branches plant−1; pods and grains plant−1, grain and biomass yields, 100-grain weight, and HI compared to the control. P rates response has been affected by moisture level, pH, available P and N, and variety. Particularly, joint use of P rate and rhizobium inoculation on chickpea has been stated to improve nodulation, growth, and yield and soil fertility. Various studies on the integrated use of P rate and rhizobium inoculation under varying situations showed enhanced nodulation, growth, and yield over the P rate or rhizobium inoculation alone. This might be attributed to adequate P supply and improved utilization with the provision of suitable N2-fixing bacteria for enhanced nodulation and adequate N supply.

Highlights

  • Chickpea (Cicer arietinum L.) is one of the cool season crops and has most likely been originated in the area of presentday southeastern Turkey and adjacent Syria [1]. e cultivated chickpea is among the first grain legumes that have been domesticated in the Old World [2]

  • Its productivity has been declined probably due to P-deficiency and the usual native soil rhizobial populations are insufficient/ ineffective in N2-fixation

  • Various research reports showed an optimistic effect of rhizobium inoculation on nodulation, growth, yield, and its components of chickpea over uninoculated ones; this has been influenced by mineral N content and P-deficiency of soil, rhizobium strain, variety, pH, salinity, and moisture stress

Read more

Summary

Review Article

Effect of P Application Rate and Rhizobium Inoculation on Nodulation, Growth, and Yield Performance of Chickpea (Cicer arietinum L.). Rhizobium inoculation of the seed may substitute costly N-fertilizers and provide a useful way of achieving sustainable production. To supply an adequate rhizobial population in the rhizosphere, seed inoculation of chickpea with an effective and importunate rhizobial strain is essential in soils having no/feeble bacterial existence and has revealed optimistic effect on nodule number and mass, growth, yield, and its attributes over uninoculated ones. Its effect has been influenced by N content and P-deficiency of soil, rhizobium strain, variety, T°, pH, salinity, and moisture stress. Joint use of P rate and rhizobium inoculation on chickpea has been stated to improve nodulation, growth, and yield and soil fertility. Various studies on the integrated use of P rate and rhizobium inoculation under varying situations showed enhanced nodulation, growth, and yield over the P rate or rhizobium inoculation alone. is might be attributed to adequate P supply and improved utilization with the provision of suitable N2-fixing bacteria for enhanced nodulation and adequate N supply

Introduction
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.