Abstract

Disinfection by-product (DBP) formation was evaluated before and after ozone implementation at two full-scale drinking water facilities in Las Vegas, NV USA. The two treatment plants used preozonation for primary disinfection followed by direct filtration with subsequent chlorination for secondary disinfection. DBP data was evaluated from the finished water of the two treatment plants along with six locations in the distribution system. Results showed that preozonation reduced the formation of total trihalomethanes (TTHM) by up to 10 μg/L and the sum of five haloacetic acids (HAA5) by up to 5 g/L. These reductions were primarily due to decreases in the di- and trichlorinated DBPs such as chloroform, bromodichloromethane, and trichloroacetic acid. Ozonation appeared to shift the speciation of TTHMs and HAA5 to favor increased formation of the di- and tribrominated species such as bromoform, chlorodibromomethane, and dibromoacteic acid. A bromide mass balance showed that <30% of the raw water bromide was accounted for by the formation of TTHMs (8–21%), HAAs (2–3%) and bromate (5%). Reducing the concentration of THMs and HAAs is often not the primary purpose of ozonation, but it can assist utilities in meeting regulatory requirements during drinking water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call