Abstract

Shrimp, renowned for its exceptional nutritional value, holds a pivotal position within the realm of aquatic products. The supplementation of extra oxygen to shrimp throughout the entire supply chain has found application within the commercial seafood market. In this study, a dual-platform metabolic analysis, coupled with multivariate data analysis, was employed to discern the impact of supplementary oxygen. Furthermore, this approach facilitated the construction of the post-mortem metabolic profile of shrimp during cold storage. A noticeable decrease of alcohols, ketones and carbohydrates which are related to the energy metabolism in shrimp has been found during cold storage, compared to the fresh shrimp. The degradation of nutritional amino acids was alleviated in shrimp after 4 h of extra oxygen supplement. Furthermore, a higher concentration of identified fatty acids, integral to lipid metabolism and functioning as flavor compounds was observed in shrimp subsequent to oxygen supplementation. Therefore, the additional oxygen supplementation exerted influence on multiple metabolic pathways, including nitrogen metabolism, amino acid and peptide metabolism, nucleotide metabolism, carbohydrate metabolism, and lipid metabolism. This study has constructed a comprehensive post-mortem metabolic profile of shrimp during cold storage, thereby establishing a theoretical foundation for the utilization of oxygen supplements in the preservation of seafood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call