Abstract

AbstractLaser-directed energy deposition (L-DED) is a key enabling technology for the repair of high-value aerospace components, as damaged regions can be removed and replaced with additively deposited material. While L-DED repair improves strength and fatigue performance compared to conventional subtractive techniques, mechanical performance can be limited by process-related defects. To assess the role of oxygen on defect formation, local and chamber-based shielding methods were applied in the repair of 300M high strength steel. Oxidation between layers for locally shielded specimens is confirmed to cause large gas pores which have deleterious effects on fatigue life. Such pores are eliminated for chamber shielded specimens, resulting in an increased ductility of ∼15%, compared to ∼11% with chamber shielding. Despite this, unmelted powder defects are not affected by oxygen content and are found in both chamber- and locally shielded samples, which still have negative consequences for fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.