Abstract

Thin films of NiO (bunsenite) with (200) preferential orientation were synthesized on glass substrates by direct current sputtering technique in Ar+O2 atmosphere. Nanostructural properties of the NiO films were investigated by X-ray diffraction and also by atomic force microscopic (AFM) studies. Electrical and optical properties of the deposited films were investigated as a function of different partial pressure of oxygen in the sputtering gas mixture during deposition. The films showed p-type electrical conduction and the conductivity depends on the partial pressure of oxygen. The electrical conductivity (σRT) was found to be .0615 S cm−1 for films deposited with 100% O2 and its value sharply decreased with the decrease the partial pressure of O2; for example σRT for 50% O2 was 6.139 × 10−5 S cm-1. The mechanism of the origin of p-type electrical conductivity in the NiO film is discussed from the viewpoint of nickel or oxygen vacancies, which generate holes and electrons respectively. X-ray photoelectron spectroscopic studies supported the above argument. Corresponding optical properties showed that the transparency decreases with increasing oxygen partial pressure and the bandgap also decreases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call