Abstract

Electrical and dielectric properties were measured on rutile-type FeNbTiO6, sintered in air, CO2 or 5%H2/CO2 atmosphere between temperatures of 1423 and 1573K. The individual samples show characteristic differences in DC and AC conductivity, dielectric constant ε(ω) (ω is angular frequency), dielectric loss and dissipation factor. Attempts were made to distinguish between bulk, grain boundary (GB) and sample–electrode (SE) processes. Samples show very high relaxor-like ε(ω) peaks at 500−600K using Ag-paint contacts as expected from previous studies during preparation in air that is of interest for industrial application; utilizing Pt-paint and using slightly reducing sintering conditions, a clear variation was observed. These findings point to a notable influence of GB and/or SE effects on the experimental ε(ω), in addition to the intrinsic origin by polar nanoregions, as suggested earlier. Complex plane impedance plots are characterized by semicircular arcs due to bulk, GB and/or SE charge transport. The derived DC conductivity σDC shows Arrhenius behavior with activation energy of EA≈0.27–0.37eV and σDC(300K) ≈1×10−6–3×10−4Ω−1cm−1 for the bulk, EA≈0.7–0.9eV and σDC(300K)≈5×10−10–1×10−4Ω−1cm−1 for GB and/or SE processes, depending on the preparation conditions. The thermopower is small and negative, hence n-type conduction occurs and the charge carriers are electrons or electron polarons. 57Fe Mössbauer spectroscopy enabled to gain knowledge of local nonstoichiometry in the environment of Fe cations, presumably affecting electrical conduction in the bulk and GBs; after sample preparation in reducing conditions, apart from Fe3+ also the presence of Fe2+ ions was established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.